North Penn School District

Elementary Math Parent Letter

Grade 5

Unit 3 – Chapter 7: Multiply Fractions

Examples for each lesson:

Lesson 7.1

Find Part of a Group

Lauren bought 12 stamps for postcards. She gave Brianna $\frac{1}{6}$ of them. How many stamps did Lauren give to Brianna?

Find $\frac{1}{6}$ of 12.

Step 1 What is the denominator in the fraction of the stamps Lauren gave to Brianna? 6 So, divide the 12 stamps into 6 equal groups. Circle the groups.

Step 2 Each group represents $\frac{1}{6}$ of the stamps.

How many stamps are in 1 group? 2

So,
$$\frac{1}{6}$$
 of 12 is $\underline{\hspace{1cm}2\hspace{1cm}}$, or $\frac{1}{6}\times$ 12 is $\underline{\hspace{1cm}2\hspace{1cm}}$.

So, Lauren gave Brianna 2 stamps.

Multiply Fractions and Whole Numbers

Find the product. $\frac{3}{8} \times 4$			
Step 1 Draw 4 rectangles to represent the factor 4.			
Step 2 The denominator of the factor $\frac{3}{8}$ is 8. So, divide the 4 rectangles into 8 equal parts.			
Step 3 The numerator of the factor $\frac{3}{8}$ is 3. So, shade 3 of the parts.			
Step 4 The 4 rectangles have 3 shaded parts. Each rectangle is divided into 2 equal parts. So, $\frac{3}{2}$ of the rectangles are shaded.			
So, $\frac{3}{8} \times 4$ is $\frac{3}{2}$, or $1\frac{1}{2}$.			

More information on this strategy is available on Animated Math Model #27.

Lesson 7.3

Fraction and Whole Number Multiplication

Find the product.
$$3 \times \frac{5}{6}$$

$$3 \times \frac{5}{6} = \frac{3}{1} \times \frac{5}{6}$$

$$= \frac{3 \times 5}{1 \times 6}$$
Write the whole-number factor, 3, as $\frac{3}{1}$.
$$= \frac{3 \times 5}{1 \times 6}$$
Multiply the numerators. Then multiply the denominators.
$$= \frac{15}{6}$$

$$= 2 \frac{3}{6}$$
, or $2 \frac{1}{2}$
Write the product as a mixed number in simplest form.
$$So, 3 \times \frac{5}{6}$$
 is $\frac{2\frac{1}{2}}{2}$.

More information on this strategy is available on Animated Math Model #27.

Multiply Fractions

You can use a model to help you multiply two fractions.

Multiply. $\frac{1}{3} \times \frac{4}{5}$

Step 1 Draw a rectangle. Divide it into 5 equal columns. To represent the factor $\frac{4}{5}$, shade 4 of the 5 columns.

Step 2 Now divide the rectangle into 3 equal rows. Shade $\frac{1}{3}$ of the $\frac{4}{5}$ you already shaded.

The rectangle is divided into 15 smaller rectangles. This is the denominator of the product.

There are 4 smaller rectangles that contain both types of shading. So, 4 is the numerator of the product.

So $\frac{4}{15}$ of the rectangles contain both types of shading.

$$\frac{1}{3} \times \frac{4}{5} = \frac{4}{15}$$

Think: What is $\frac{1}{3}$ of $\frac{4}{5}$?

More information on this strategy is available on Animated Math Model #28.

Compare Fraction Factors and Products

	You can use a model to determine how the size of the product compares to the size of one factor when multiplying fractions.	
l	The factor is 1: $\frac{2}{3} \times 1$	
l	 Draw a model to represent the factor 1. Divide it into 3 equal sections. 	
l	• Shade 2 of the 3 sections to represent the factor $\frac{2}{3}$.	
l	$\frac{2}{3}$ of the rectangle is shaded. So, $\frac{2}{3} \times 1$ is $\frac{\text{equal to}}{3}$.	
l	The factor is greater than 1: $\frac{2}{3} \times 2$	
l	 Draw two rectangles to represent the factor 2. Divide each rectangle into 3 equal sections. 	
l	• Shade 2 of 3 sections in each to represent the factor $\frac{2}{3}$.	
l	In all, 4 sections are shaded, which is greater than the number	
l	of sections in one rectangle. So, $\frac{2}{3} \times 2$ is $\frac{\text{greater than }}{3}$.	
l	The factor is less than 1: $\frac{2}{3} \times \frac{1}{6}$	
l	Draw a rectangle. Divide it into 6 equal columns.	
l	Shade 1 of the 6 columns to represent the factor $\frac{1}{6}$.	
l	Now divide the rectangle into 3 equal rows. Shade 2 of the	
l	3 rows of the section already shaded to represent the factor $\frac{2}{3}$.	
l	The rectangle is divided into 18 sections. 2 of the sections are	
ı	shaded twice. 2 sections is less than the 3 sections that represent $\frac{1}{6}$	

Lesson 7.6

Fraction Multiplication

So, $\frac{2}{3} \times \frac{1}{6}$ is <u>less than</u> $\frac{1}{6}$

$$\frac{3}{10} \times \frac{4}{5} = \frac{3 \times 4}{10 \times 5}$$
$$= \frac{12}{50}$$

Step 2 Write the product in simplest form.

$$\frac{12}{50} = \frac{12 \div 3}{50 \div 3}$$

$$= \frac{6}{25}$$
So, $\frac{3}{10} \times \frac{4}{5}$ is $\frac{6}{25}$

More information on this strategy is available on Animated Math Models #27, 28.

Area and Mixed Numbers


You can use an area model to help you multiply mixed numbers.

Find the area. $1\frac{4}{5} \times 2\frac{1}{3}$

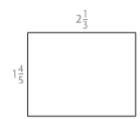
Step 1 Rewrite each mixed-number factor as the sum of a whole number and a fraction.

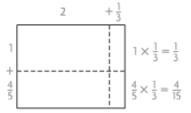
$$1\frac{4}{5} = 1 + \frac{4}{5}$$
 and $2\frac{1}{3} = 2 + \frac{1}{3}$

Step 2 Draw an area model to show the original multiplication problem.

$$1 \times 2 = 2$$

$$1 \times \frac{1}{3} = \frac{1}{3}$$


$$\frac{4}{5} \times 2 = \frac{8}{5}$$


$$\frac{4}{5} \times \frac{1}{3} = \frac{4}{15}$$

Step 5 Add the areas of each of the sections to find the total area of the rectangle.

$$2 + \frac{1}{3} + \frac{8}{5} + \frac{4}{15} = \frac{\boxed{30}}{15} + \frac{\boxed{5}}{15} + \frac{\boxed{24}}{15} + \frac{4}{15}$$
$$= \frac{\boxed{63}}{15}, \text{ or } \underline{4\frac{1}{5}}$$

So,
$$1\frac{4}{5} \times 2\frac{1}{3}$$
 is $\underline{4\frac{1}{5}}$.

Compare Mixed Number Factors and Products

Complete each statement with equal to, greater than, or less than.

$$1 \times 1\frac{3}{4}$$
 is _______ $1\frac{3}{4}$.

The Identity Property of Multiplication states that the product of

1 and any number is that number. So, 1 \times 1 $\frac{3}{4}$ is <u>equal to</u> 1 $\frac{3}{4}$

$$\frac{1}{2} \times 2\frac{1}{4}$$
 is ______ $2\frac{1}{4}$.

Draw three rectangles. Divide each rectangle into 4 equal columns.

Shade completely the first two rectangles and one column of the last rectangle to represent $\frac{1}{4}$.

Divide the rectangles into 2 rows. Shade one row to represent the factor $\frac{1}{2}$.

18 small rectangles are shaded. 9 rectangles have both types of shading. 9 rectangles is less than the 18 rectangles that represent $2\frac{1}{4}$.

So,
$$\frac{1}{2} \times 2\frac{1}{4}$$
 is less than $2\frac{1}{4}$.

When you multiply a mixed number by a fraction less than 1,

the product will be less than the mixed number.

$$1\frac{1}{4} \times 1\frac{3}{4}$$
 is ______ $1\frac{1}{4}$.

Use what you know about the product of two whole numbers greater than 1 to determine the size of the product of two mixed numbers.

So,
$$1\frac{1}{4} \times 1\frac{3}{4}$$
 is $\frac{greater\ than}{1}$ $1\frac{1}{4}$ and $\frac{greater\ than}{1}$ $1\frac{3}{4}$

When you multiply two mixed numbers, their product is greater than either factor.

Multiply Mixed Numbers

You can use a multiplication square to multiply mixed numbers.

Multiply. $1\frac{2}{7}\times1\frac{3}{4}$ Write the product in simplest form.

Step 1 Write the mixed numbers outside the square.

×	1	<u>2</u> 7
1		
$\frac{3}{4}$		

Step 2 Multiply the number in each column by the number in each row.

×	1	$\frac{2}{7}$
1	1 × 1	$\frac{2}{7} \times 1$
$\frac{3}{4}$	$1 \times \frac{3}{4}$	$\frac{2}{7} \times \frac{3}{4}$

Step 3 Write each product inside the square.

×	1	<u>2</u>
1	1	27
<u>3</u>	<u>3</u>	3 14

Step 4 Add the products inside the multiplication square.

$$1\,+\frac{2}{7}+\frac{3}{4}+\frac{3}{14}$$

Find the least common denominator.

$$\frac{28}{28} + \frac{8}{28} + \frac{21}{28} + \frac{6}{28} = \frac{63}{28}$$

Simplify.

$$\frac{63}{28} = 2\frac{7}{28}$$
, or $2\frac{1}{4}$

So,
$$1\frac{2}{7} \times 1\frac{3}{4}$$
 is $2\frac{1}{4}$

Problem Solving • Find Unknown Lengths

Zach built a rectangular deck in his backyard. The area of the deck is 300 square feet. The length of the deck is $1\frac{1}{3}$ times as long as the width. What are the dimensions of the deck?

Read the Problem			
What do I need to find? I need to find the dimensions of the deck	What information do I need to use? The deck has an area of 300 square feet, and the length is $1\frac{1}{3}$ as long as the width.	How will I use the information? I will <u>Guess</u> the length and width of the deck. Then I will <u>check</u> my guess and <u>revise</u> it if it is not correct.	

Solve the Problem

I can try different values for the length of the deck, each that is $1\frac{1}{3}$ times as long as the width. Then I can multiply the length and width and compare to the correct area.

Guess		Check	Revise
Width (in feet)	Length (in feet) (1 \frac{1}{3} times the width)	Area of Deck (in square feet)	
12	$1\frac{1}{3} \times 12 = 16$	$12 \times 16 = \frac{192}{192}$ too low	Try a longer width.
18	$1\frac{1}{3} \times 18 = \underline{24}$	$18 \times 24 = 432$ too high	Try a shorter width.
15	$1\frac{1}{3} \times 15 = \underline{20}$	$15 \times 20 = \frac{300}{2}$ correct	

So, the dimensions of the deck are 20 feet by 15 feet.

Vocabulary

Denominator – the number below the bar in a fraction that tells how many equal parts are in the whole or in the group

Equivalent fractions – two or more fractions that name the same amount

Mixed number – a number represented by a whole number and fraction

Numerator – the number above the bar in a fraction that tells how many equal parts of the whole are being considered

Product – the answer to a multiplication problem

Simplest form – a fraction in which 1 is the only number that can divide evenly into the numerator and the denominator